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A new test for random events of an exponential distribution
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Abstract. A new statistical test procedure is described to evaluate whether a set of radioactive-decay data
is compatible with the assumption that these data originate from the decay of a single radioactive species.
Criteria to detect contributions from other radioactive species and from different event sources are given.
The test is applicable to samples of exponential distributions with two or more events.
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1 Introduction

In the observation of radioactive-decay events it is a ques-
tion of basic interest whether the data are compatible
with the assumption that the measured time values origi-
nate from the decay of a single radioactive species. In the
present work we will present a test particularly adapted
to low counting statistics, which is based on the second
moment of the logarithmic decay-time distribution. The
new test provides an additional tool to validate important
discoveries based on low event numbers as, e.g., in the
search for new heavy elements.

A radioactive nucleus is characterised by a certain de-
cay probability per time dP/dt = λ. From a specific num-
ber n0 of radioactive nuclei, each one decays indepen-
dently of the others. Therefore, the number of remaining
nuclei n(t) decreases gradually as a function of time:

dn
dt
= −λn(t). (1)

The solution of this differential equation is

n(t) = n0 exp(−λt). (2)

The number of decay events per time is given by∣∣∣∣dndt
∣∣∣∣ = λn0 exp(−λt). (3)

This is the density distribution of radioactive decays of
one species of nuclei.

In an experiment, the times t1, t2, . . . , ti, . . . , tn of indi-
vidual radioactive decays from a limited number of nuclei
represent a sample of this density distribution. This sam-
ple is subject to statistical fluctuations. It is the task of
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a statistical analysis to deduce an estimate of the decay
constant λ. This task may be complicated by the fact that
the radioactive decays can only be observed in a limited
time range, above a lower threshold tmin and below an
upper threshold tmax. In addition, events of other species
which decay with different decay constants or background
events which appear with a constant rate may be mixed
in. An even more complex situation appears, if daughter
nuclei produced in the primary decay are also radioactive.

Elaborate methods have been developed to determine
the decay constants λ of the contributing radioactive
species and their statistical uncertainties (see, e.g., ref. [1]
and the references given therein). A short review on these
methods with special emphasis on their applicability to
low counting statistics allows us to develop a new proce-
dure in order to test the compatibility of measured data
with the assumption of a radioactive decay. This test
might be helpful to decide whether an observed sample
of events originates from the radioactive decay of a sin-
gle radioactive species. It also gives a handle to discover
events from other sources than radioactive decay.

2 Analysis methods

2.1 First moment of the decay times

The first moment (average) of the density distribution (3)
is

t =

∫ ∞
0

tλn0 exp(−λt)dt∫ ∞
0

λn0 exp(−λt)dt
=

[
−λt−1

λ2 exp(−λt)
]∞
0[

1
−λ exp(−λt)

]∞
0

=
1
λ

. (4)
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That means that the first moment of the measured decay
times

texp =
∑n

i=1 ti
n

(5)

is an estimate of the inverse of the decay constant 1/λ.
However, there are a few prerequisites for the application
of this method:

1. The full time range must be covered by the measure-
ment. (tmin must be very small and tmax must be very
large compared to 1/λ).

2. Any contribution of other radioactive species and any
background must be excluded.

The first moment of the measured decay times is eas-
ily evaluated and gives a good estimate for the decay con-
stant, also in the case of low statistics, even for a single
event.

The second moment could be used for testing the com-
patibility of the data with a radioactive decay. However, it
is inconvenient that its value strongly depends on the de-
cay constant which can only roughly be determined from
the data in the case of low statistics.

2.2 Exponential decay curve

In the conventional analysis procedure of radioactive-
decay data, the individual decay times are sorted into a
spectrum with time intervals of constant width ∆t. The
channel m of the spectrum contains the number of events
observed between the time tm and the time tm +∆t. The
expected shape of this spectrum is approximately equal to
the density distribution (3):

∆n

∆t
≈ dn
dt

. (6)

This spectrum has the shape of an exponential func-
tion. When drawn in a logarithmic scale, the data points
are expected to follow a straight line. The decay con-
stant can be determined by a fit, e.g., by the least-squares
method which minimises the sum of the quadratic devi-
ations of measured and calculated numbers of events per
time interval. Contributions of another radioactive species
and of background events can be recognized and extracted
by using a more complex fit function.

The usage of this method is not so evident in the case
of low statistics. Many time intervals may not contain any
event, and the shape of the spectrum is dominated by
statistical fluctuations. In this case, it is difficult to judge
whether the spectrum contains decay events of a single
nuclear species only. Another disadvantage of the method
is that one needs a large number of channels to represent
the mixture of different radioactive species with strongly
differing lifetimes.

2.3 Logarithmic time scale

An unconventional way to represent radioactive-decay
data, first proposed in ref. [2], consists of sorting the in-
dividual decay times into a spectrum with time intervals
∆t which have a width that is proportional to the time t,
that means ∆t/t = constant. The representation in such
logarithmic time bins allows storing the relevant informa-
tion of decay times over a very large range of time with a
moderate number of channels. The corresponding density
distribution is given by

dn
d(ln t)

=
dn
dt

dt
d(ln t)

= −n0λt exp(−λt) =

−n0 exp
(
ln(λt)

)
exp

( − exp(ln(λt))
)
=

−n0 exp
(
ln t+ lnλ

)
exp

(
exp(− ln t+ lnλ)

)
(7)

or if we introduce Θ = ln t1:∣∣∣∣ dndΘ
∣∣∣∣ = n0 exp(Θ + lnλ) exp(− exp (

Θ + lnλ)
)
. (8)

This is a bell-shaped, slightly asymmetric curve. It is ob-
vious that the distribution does not depend in shape on
the decay constant λ, it is just shifted by − lnλ = ln(1/λ).
Only the height scales with the number of counts n0. Its
integral is equal to n0. The maximum of this function is
located at Θmax which is given by

d2n

dΘ2
= 0 −→ Θmax = ln

(
1
λ

)
. (9)

The standard deviation (the square root of the second
moment) of this curve is

σΘ =

√∫ +∞
−∞

(
Θ − Θ

)2∣∣ dn
dΘ

∣∣dΘ
n

(10)

with

Θ =

∫ +∞
−∞ Θ| dn

dΘ |dΘ
n

. (11)

The value of σΘ is about 1.28. The fact that a radioactive
decay curve has a universal shape in this representation
gives us a handle to detect if a second radioactive species
contributes to the spectrum. In this case, the standard
deviation of the logarithm of the measured decay times

σΘexp =

√∑n
i=1

(
Θi − Θexp

)2

n
(12)

with

Θexp =
∑n

i=1 Θi

n
(13)

1 In these considerations we use t and λ as dimensionless
numbers by implicitly introducing a time unit. The results of
this work do not depend on the choice of this time unit.
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is larger. If the standard deviation σΘ exp is significantly
smaller, this might be an indication that the decay-time
spectrum is incomplete because the experiment was not
sensitive to the whole range of decay times. If this pos-
sibility is excluded, this is a strong indication that the
observed events or at least part of them do not originate
from radioactive decays but from some other source.

3 Test procedure

As suggested in the preceding chapter, the universal shape
of the logarithmic time distribution of radioactive decays
offers the possibility for testing whether a set of measured
data is compatible with the assumption that these data
originate from the radioactive decay of a single nuclear
species. On the basis of this idea, we will elaborate a
test which compares the standard deviation of the mea-
sured logarithmic time distribution with theoretical ex-
pectations.

Like the time values ti of individual radioactive-decay
events, also the standard deviation σΘ exp of the loga-
rithmic decay-time distribution of a specific experiment
evaluated by eq. (12) is subject to statistical fluctuations.
The expected magnitude of these fluctuations can be es-
timated. They give a measure for the expected deviation
of the width of the measured logarithmic decay-time dis-
tribution from the expected value.

The basic idea of the test we propose in the present
work is best illustrated for the case of two observed decay
events. Let us assume that their decay times differ by a
factor of two or three. Considering the spread of an expo-
nential decay, such behaviour looks quite “normal” to us.
Now take another two decay events which differ by sev-
eral orders of magnitude in time. This does not look like
a “normal” behaviour. One is tempted to attribute the
two events to two different radioactive species with differ-
ent lifetimes. A third sample may consist of two measured
events with almost exactly the same time values. Also this
sample does not look “normal”, it is a fortuitous, not very
probable result. It will be our task to find a quantitative
description for the compatibility of such observations with
the assumption of the decay of a single radioactive species.

A closer view on the problem reveals that the expected
distribution of the standard deviation σΘ exp of logarith-
mic decay-time distributions (eq. (12)) differs systemati-
cally from the distribution of σΘ values defined by eq. (10).
The reason for this difference is that Θ in eq. (10) is the
“true” mean value of the distribution, while Θexp is the
estimate for the mean value deduced from the observed
events (eq. (13)). Therefore, the standard deviation σΘ exp

is systematically smaller than the value of σΘ, especially
for small numbers of events. Some expected characteristic
properties of the distribution of σΘ exp values have been
calculated with Monte Carlo techniques. A number n of
random decay times t1, . . . , tn from a given exponential
distribution were chosen at random and analysed accord-
ing to eqs. (12) and (13) to determine a statistical sample
of σΘexp . This procedure was repeated many times. These

samples of σΘexp are denoted by xj(n), j = 1 to k, in the
following. From a large number of samples (k → ∞) for
different values of n, the expectation value En, the stan-
dard deviation σn, and the relative skewness γn of the
distribution of the quantity σΘexp as a function of n were
calculated from the relations

En = lim
k→∞

{∑k
j=1 xj(n)

k

}
, (14)

σn =

√√√√ lim
k→∞

{∑k
j=1(xj(n)− En)2

k

}
, (15)

and

γn = lim
k→∞

{∑k
j=1(xj(n)− En)3

k

}/
σ3/2

n . (16)

The resulting values are listed in table 1. (Of course,
only a finite value of k could be realised in the numerical
calculation. This explains the slightly irregular behaviour
of the values.)

By normalising the distributions obtained for σΘexp

from these samples and integrating up to levels of 5% and
95%, respectively, one obtains the limits which comprise
the range of σΘexp values which can be accepted with a
90% significance level to belong to the radioactive decay
of a single radioactive species. These limits are also listed
in table 1. Experimental values of σΘexp falling below the
lower limit can be rejected with an error chance below 5%
to originate from radioactive decay. If the experiment was
sensitive to the whole decay-time range, at least part of
the events originates from another kind of source, may be
from some periodic noise. Experimental values of σΘexp

falling above the upper limit can be rejected with an error
chance below 5% to belong to the decay of a single radioac-
tive species. If any background can be excluded, there is
probably another radioactive species with another lifetime
which contributes to the observed sample. The test can
easily be extended to other values of the significance level.

4 Examples

Finally, we would like to illustrate the test procedure with
two examples. In the discovery of the nucleus 271110,
five events with alpha energies close to 10.74MeV have
been observed [3]. The decay times measured were 0.6ms,
1.8ms, 4.4ms, 0.5ms, and 2.6ms. The analysis of these
events results in a value of 0.84 for σΘexp . This value falls
well between the limits (0.41 and 1.9) defined by a signifi-
cance level of 90% given in table 1 for 5 events. Thus, these
events are consistent with the assumption that they origi-
nate from the decay of one radioactive species, namely the
same state of 271110.

Figure 1 demonstrates the time distribution of these
events on a logarithmic time scale. The expected logarith-
mic decay-time distribution (eq. (7)) with ln(1/λ) = 0.84
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Table 1. Expected properties of the distribution of the standard deviation σΘ exp of logarithmic decay-time distributions, defined
by eqs. (12) and (13) for given numbers n of observed events. The values have been calculated by Monte Carlo techniques.
This explains their slightly irregular behaviour. Experimental values falling below the lower limit can be rejected with an error
chance below 5% to originate from radioactive decay. Experimental values falling above the upper limit can be rejected with an
error chance below 5% to belong to the decay of a single radioactive species.

Number of Expectation Expected standard Expected relative Lower limit Upper limit
events value En for deviation skewness of σΘexp of σΘexp

n σΘexp σn of σΘexp γn

1 0 0 0 — —
2 0.69 0.58 1.42 0.04 1.83
3 0.89 0.55 1.24 0.19 1.91
4 0.98 0.50 1.13 0.31 1.92
5 1.04 0.47 1.12 0.41 1.90
6 1.08 0.44 1.10 0.48 1.89
7 1.11 0.42 0.99 0.52 1.87
8 1.13 0.40 0.96 0.58 1.85
9 1.15 0.38 0.95 0.62 1.84
10 1.16 0.37 0.90 0.65 1.82
11 1.17 0.35 0.84 0.67 1.81
12 1.18 0.34 0.84 0.70 1.79
13 1.19 0.33 0.82 0.72 1.77
14 1.19 0.32 0.78 0.73 1.77
15 1.20 0.31 0.78 0.75 1.76
16 1.20 0.30 0.76 0.77 1.75
17 1.21 0.30 0.74 0.78 1.74
18 1.22 0.29 0.72 0.79 1.73
19 1.22 0.28 0.69 0.80 1.72
20 1.22 0.28 0.68 0.81 1.71
30 1.24 0.23 0.57 0.89 1.64
40 1.25 0.20 0.55 0.94 1.60
50 1.25 0.20 0.55 0.98 1.57
60 1.26 0.17 0.44 1.00 1.54
70 1.26 0.15 0.45 1.02 1.53
80 1.27 0.15 0.45 1.04 1.51
90 1.27 0.14 0.40 1.05 1.50
100 1.27 0.13 0.37 1.06 1.49

n → ∞ 1.28 1.3/
√

n → 0 1.28− 2.15/
√

n 1.28 + 2.15/
√

n

(using a time unit of 1ms) is shown in addition. This
graphical presentation gives an illustration on the scat-
tering of the decay times of a radioactive nucleus.

As a second example we chose the three decay chains,
attributed to the alpha-decay cascade of the nucleus
293118 as reported in ref. [4]. Since the decay times of
the second, the third and the forth decay in these chains
are rather close in time, we apply the test to the total-
ity of these 9 observed decay times. The values are given
in table 2. The data originate from the decay of at least
3 different states. Therefore, we expect some broadening
of the distribution if compared to the decay of a single
state. This means that only deviations of σΘexp below the
lower limit of the confidence interval are significant. They
would give some indication that the source of the events
is different from a radioactive decay.

The resulting value of σΘexp = 0.467, calculated from
the values in table 2 with eqs. (12) and (13), is clearly
lower than the lower limit of the 90% confidence interval
given in table 1 which was determined to be 0.62. Ac-
cording to our criterion, the assumption that these events

Fig. 1. Logarithmic decay-time distribution of 5 events ob-
served in the α decay of 271110 with alpha energies close to
10.74MeV. Data are taken from ref. [3]. The curve shows the
logarithmic decay-time distribution (eq. (7)). The units on the
ordinate are arbitrary.
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Table 2. Measured decay times of the second, third and forth
alpha decay of the three decay chains, attributed to the decay
of 293118 in ref. [4].

First chain Second chain Third chain
α2 1.243ms 1.207ms 0.310ms
α3 0.708ms 0.741ms 1.047ms
α4 1.201ms 1.750ms 0.939ms

originate from radioactive decays is statistically rejected
with an error probability of less than 5%. This value gives
the probability for an error of the first kind, i.e. the prob-
ability that the rejection is not justified. We would like to
stress that the level of 5% does not provide strong evidence
for the interpretation of these data. The test just yields an
additional criterion for the judgement of the data, to be
combined with the other experimental information avail-
able.

5 Conclusion

We have developed a procedure to test the hypothesis that

a set of data originates from the decay of a single radioac-
tive species. Larger fluctuations indicate that there is a
continuous background or that one or more additional ra-
dioactive species with different half lives contribute to the
data. Smaller fluctuations indicate that at least part of
the data cannot be attributed to a radioactive decay but
rather originates from a periodic noise. The test is partic-
ularly suited for small event numbers. It is applicable to
any random variable governed by an exponential distribu-
tion.
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